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Abstract

Background: The placebo response in epilepsy randomized clinical trials

(RCTs) has recently been shown to largely reflect underlying natural variability

in seizure frequency. Based on this observation, we sought to explore the

parameter space of RCT design to optimize trial efficiency and cost. Methods:

We used one of the world’s largest patient reported seizure diary databases,

SeizureTracker.com to derive virtual patients for simulated RCTs. We ran 1000

randomly generated simulated trials using bootstrapping (sampling with

replacement) for each unique combination of trial parameters, sweeping a large

set of parameters in durations of the baseline and test periods, number of

patients, eligibility criteria, drug effect size, and patient dropout. We studied

the resulting trial efficiency and cost. Results: A total of 6,732,000 trials were

simulated, drawing from 5097 patients in the database. We found that the

strongest regression predictors of placebo response were durations of baseline

and test periods. Drug effect size had a major impact on trial efficiency and

cost. Dropout did not have a major impact on trial efficiency or cost. Eligibility

requirements impacted trial efficiency to a limited extent. Cost was minimized

while maintaining statistical integrity with very short RCT durations.

Discussion: This study suggests that RCT parameters can be improved over

current practice to reduce costs while maintaining statistical power. In addition,

use of a large-scale population dataset in a massively parallel computing analy-

sis allows exploration of the wider parameter space of RCT design prior to run-

ning a trial, which could help accelerate drug discovery and approval.

Introduction

Epilepsy affects about 1% of the US population.1 Medica-

tions are only able to fully protect about ⅔ of patients 2

from seizures, a number that has remained relatively

stable for many years. Indeed, over 22 medications and

two implanted devices have been approved by the FDA

over the decades. However, enthusiasm in industry for

epilepsy is now tempered by soaring costs for drug devel-

opment.3 Therefore, there is a critical need for improved

trial efficiency in order to accelerate drugs to market.

Our group showed recently that the so-called placebo

effect in epilepsy may in fact reflect underlying variability

of seizure rates, rather than a true response to placebo.4 If

so, then detailed trial parameters are critical factors influ-

encing success or failure. Features such as number of

patients per treatment arm, inclusion/exclusion criteria,

and duration of various trial phases may play a major

role in determining outcome because these same parame-

ters will influence to what extent natural variability will

be sampled. In the case of diseases where natural variabil-

ity is low, such decisions might be made on other

grounds, but there is now evidence to suggest that in epi-

lepsy, the selection of these parameters may dictate the

likelihood of trial success to an extent.

This project’s goal is therefore to quantify the conse-

quences of those parameter choices on randomized clini-

cal trials (RCT) outcomes.
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Methods

Overview

Using patient reported seizure diaries from

SeizureTracker.com,4,5 we generated a series of virtual

patients. The virtual patients were used to form simulated

trials, which included patient dropout. In each trial, 50%

of patients had simulated “drug”, while the other 50%

had a “placebo.” For each unique combination of RCT

parameters considered, a set of 1000 simulated RCTs were

simulated. Parameters were then tested systematically,

allowing a “parameter sweep” across multiple trial dimen-

sions. The methods are summarized in Figure 1. The

characteristics of these simulated trials were then analyzed

for efficiency and cost. Simulation was conducted on the

NIH HPC Biowulf cluster in Matlab 2016b and trial out-

comes were calculated in R 3.3.0. Source code available

on request. The raw data is provided through the Interna-

tional Seizure Diary Consortium.

Generating a virtual patient

Each virtual patient was generated using data from one of

the world’s largest patient reported seizure diary data-

bases, SeizureTracker.com.4,6 A deidentified, unlinked

data export from SeizureTracker was created on June 31,

2016, in accordance with the NIH Office of Human Pro-

tection protocol #12301. Demographic data was used to

exclude any patient with unlisted or impossible ages. Sim-

ilarly, seizures with dates that predated the patient’s birth

date or occurred after the data export were excluded from

further analysis. Any patient diary with >=6 seizures

recorded over at least 6 months was considered. Of note,

an additional minimum eligibility requirement was

imposed later in the processing (see Parameter sweeps).

The trial duration was simply the sum of the baseline

phase duration (a trial parameter) and the test period

duration (another trial parameter). In these simulations,

no “titration” phase was included.

For each individual virtual patient, data was derived

from a single randomly chosen unique patient diary in Sei-

zureTracker (uniform random selection with replacement).

A randomly selected starting position was chosen from a

uniform distribution from the first recorded seizure until

the last possible time that would allow a full simulated

trial’s worth of data. In this way, even if the same patient

were chosen multiple times, different virtual diaries would

be obtained. Essentially, the technique employed was a

form of bootstrapping (sampling with replacement). From

the selected starting time, an uninterrupted record of “trial

duration” of data was used. For example, if patient 25 was

selected, and the selected starting time was day 45, and a

120-day trial duration was required, then days 45–164
from patient 25 would be assigned as the requested virtual

patient diary, now called day 1 through day 120.

With the diary data, 2-week blocks of time were

counted out, resulting in a set of seizure counts for the

trial duration, (Ci,j, the ith count from patient j). For

example, if patient number 6 had 12 seizures in the first

2-weeks, then eight seizures in the second 2-weeks, and

13 seizures in the third 2-week period, we would write:

C1,6 = 12; C2,6 = 8; C3,6 = 13.

Simulating “drug”

During the experimental phase of “drug” exposed patient,

a simulated drug was applied by randomly removing

Figure 1. Simulation flow chart. A single virtual patient was

constructed according to the area inside the dashed lines. First,

patient j was selected from a uniform random distribution (with

replacement). A starting time T was selected from a uniform random

distribution (with replacement) within that patient’s diary, and one

trial duration was copied out of that patient’s original diary to form

the basis for the trial data. Note that the order of events was

preserved. If the patient was assigned to placebo, the trial data was

unchanged. If assigned to drug, then a single randomly selected drug

strength, Dj, was chosen from a normal distribution (Equation 1). If Dj

>= 0, then Dj % of the time seizures were removed from the trial

data. If Dj < 0, then Dj % of the time seizures were added to the trial

data. This entire process was repeated for all N patients to produce a

single virtual trial. The trial with identical parameters was repeated

1000 times to obtain summary values for power, effect size and P

values. Then parameter values were changed systematically to test the

impact of each parameter on summary statistics.
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seizures from the diary. There was one drug effect size,

(D0) per simulated trial. The drug effect size for each

patient (Dj) was modeled as a normally distributed ran-

dom variable with mean D0 and standard deviation 10%.

Any Dj > 100% was forced to 100%, and any

Dj < �100% was forced to �100%. Therefore, each

patient experienced a unique drug effect size:

Dj �N D0; 10ð Þ;whereDj 2 ½�100%; 100%� (1)

Thus, if the trial’s drug effect size D0 was 20%, then a

patient’s personally experienced drug effect size might be

15%. A second patient exposed to that same drug might

experience a drug effect size of 25%. It is apparent from

the above that some patients may indeed have negatively

valued Dj, which matches clinical experience that a

minority of patients paradoxically experience a worsening

of seizures with some anti-seizure drugs. Thus, Dj values

can be as high as 100% (i.e. complete seizure-freedom)

or as low as �100% (i.e. doubling of baseline seizure

rate).

The 2-week seizure counts (Ci,j, the ith count from

patient j) during the drug testing phase were modulated

by the simulated drug. When Dj was positive, Ci,j was

reduced by a random amount. When Dj was negative, Ci,j

was increased by a random amount. The amount of

increase or decrease was determined using the sum of Ci,j

random indicator variables that with probability of being

equal to 1 given by Dj

Dropout

Dropout rates of 0 through 40% were tested, though typi-

cal the dropout rates reported in the literature range 20–
30%. Dropout was simulated using a set expected level

for the trial, meaning it was included as one of the trial

parameters. For example, if dropout was set to 10%, then

each virtual patient was given a 10% probability of expe-

riencing dropout. Dropout patients then had a uniformly

distributed random number chosen between 1 and the

number of 2-week segments in the trial. That number

represented the segment when the patient would experi-

ence dropout. For example, if a virtual patient had a total

of 12 2-week segments, and the number 4 was chosen

randomly, then the first three segments would remain

intact, and all subsequent segments would become miss-

ing values.

Simulated trial

For a given set of N virtual patients (see section Generat-

ing a virtual patient) required for a simulated trial, 50%

were assigned to “placebo” and 50% to “drug”. The latter

group had a virtual “drug” applied, as described in

section Simulating “drug”, and dropout assigned as

described in Dropout. The former group had no change

to their diary data during the “placebo” testing phase,

but did ‘experience’ dropout. The trial outcome was

assessed using the two commonly selected primary end-

points in epilepsy clinical RCTs: the 50% responder rate

(RR50), and the median percentage change (MPC).7

RR50 represents the proportion of each trial arm that

experienced a 50% or greater reduction in seizures dur-

ing the testing phase compared to the baseline phase.

MPC represents the median value, across patients, of the

percentage change in the normalized seizure rate between

baseline and experimental phases. The statistical compar-

ison between the “drug” and “placebo” arm was con-

ducted using Fisher’s Exact test for RR50 and the

Wilcoxon Rank Sum test for MPC in the typical

fashion.7

Parameter sweeps

Each unique set of parameters was tested in a set of 1000

simulated trials. A set of parameter combinations was

tested such that a “sweep” across multiple possible values

could be evaluated. The parameters considered were:

baseline phase duration (B), testing phase duration (T),

number of patients (N), minimum number of seizures

during baseline (min), dropout (R), and drug effect size

(D).

Parameter sweeps were conducted such that each of

variables were explored through commonly and less com-

monly encountered values. Three parameter sweeps were

conducted across four values of D, R and min, respec-

tively. For each value within the sweep, a complete set of

B, T and N were also generated. A complete set com-

prised B=(2,4,6,8,10,12), T = (2,4,6,8,10,12) and N=
(100,150,. . .900), totaling 612 combinations.

The drug effect size (D) sweep tested

D = 10%,20%,30% and 40%, using min=4 and drop-

out=0%. The eligibility minimum value (min) sweep

tested min=2,4,6,8, using D = 30% and dropout=0%. The

dropout sweep tested dropout=10%,20%,30%,40% using

min=4 and D = 30%. Thus, the complete set of simulated

trials comprised (612 9 4x3 – 612) and 1000 repetitions

per parameter set, thus 6,732,000 trials.

Cost analysis

To compare the relative costs of the different parameter

combinations, we used a simplified model based on

recent costs from three recent trials (personal communi-

cation, Eisai) that considered the cost of a phase II/III

trial to be reduced to fixed costs (average= $20,261,142)

and price per patient per month (average=$1,295). Using
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the latter figure, the duration of the baseline phase (B) in

months, and the duration of the testing phase (T) in

months, and the number of patients (N), the cost for a

trial can be estimated as follows:

trial cost ¼ 20; 261; 142þ variable costs (2)

variable costs ¼ 1295� ðBþ TÞ � N (3)

Given a set of 1000 simulated trials with identical trial

parameters, if 90% of the trials are able to achieve an

RR50 difference between “drug” and “placebo” with

P < 0.05, then such parameters would be considered to

possess 90% statistical power, a commonly chosen initial

condition for trial design. If a set of 1000 simulated trials

achieve less than that, a higher number of patients is

likely required to achieve 90% power. Therefore, we

sought to calculate the variable costs for different combi-

nations of drug, B and T with the minimum N required

to achieve 90% power. For example, suppose that for a

20% effective drug and trial parameters including

N = 150 patients, 800 simulated trials detected the differ-

ence between drug and placebo (i.e. 80% power). In that

case, an increase in N to perhaps 250 may be sufficient to

increase the power to 90%. On the other hand, if the

drug were 40%, the number of patients may be sufficient

at N = 150 to achieve >90% power.

Within the parameter sweep for min, we sought to find

the lowest value for min required. To achieve this, for

each combination of B and T, we found the lowest value

of N required to achieve 90% power. Within this subset

of trials, the lowest possible value of min was reported

for that combination of B and T. In this way, across all

given values of B and T, the least restrictive value of min

was obtained that would still result in an optimal trial

cost.

Regression models

In order to better characterize the outcomes of the simu-

lated trials across multiple parameters, a series of linear

regression models were developed. The models included

all possible interaction terms. They were tested to identify

relationships between the trial parameters in predicting

several outcomes: the RR50 value for placebo, the power

of RR50, the MPC value for placebo, and the power of

MPC. The R function GLM was used for the regression,

and STEP was used to test forward and backward elimi-

nation to minimize Bayesian information criterion (BIC),

thus identifying the most parsimonious linear model

required for the fit. For the drug model, covariates B, T,

N and drug were used. For the minimum eligibility

model, covariates B, T, N and min were used. For the

dropout model, covariates B, T, N and dropout were

used.

Results

The full SeizureTracker.com database includes over

22,000 unique patients, of which over 14,000 patients

reported at least one seizure. After inclusion criteria were

met, the largest set of possible patients was 5097, meaning

all virtual patients were derived from that reduced pool

of patients. The demographic composition of the Seizure-

Tracker cohort has been previously described.4

The placebo arm values from a sweep of baseline (B)

and test (T) values are shown in Figure 2. For that fig-

ure, following fixed parameters were used: number of

patients (N)=900, minimum monthly baseline seizure

rate (min)=4 and percentage of patients that drop out

of the study (dropout)=0. Each grid location represents

the average value of placebo RR50 across 1000 trials

with a given value of B and T. The figure was produced

with parameter N = 900, however any value of N from

100 to 900 produced nearly identical results. From the

figure, it is apparent that the choice of B and T play a

major role in the expected placebo responder rate, due

to the natural variability in seizure frequency. For exam-

ple, when B = 12, T = 2 the placebo RR50 value was

96.5%, whereas when B = 2 and T = 12, the placebo

RR50 was 6.7%. In the case of the commonly used

B = 8 and T = 12, the rate was 19.2%. Another com-

mon combination, B = 6, T = 12 yielded an RR50 rate

of 14.7%. Also shown, many combinations of B and T

resulted in negative MPC values, which may not be

desirable for a placebo. Of note, many grid locations

with low RR50 values correspond to grid locations with

negative MPC values. Both RR50 and MPC was corre-

lated with baseline duration (B) and negatively corre-

lated with test duration (T).

Figure 3 summarizes several analyses related to the

parameter sweep over drug. By displaying the minimum

value of N that obtains a power ≥90% from the RR50

Fisher Exact test, the images along the left side of Fig-

ure 2 show the relationship between the choice of B, T

and the subsequent required trial N. Trials with roughly

balanced values of B and T with B 2-4 weeks longer than

T require fewer patients than other combinations. Using

the N from each grid position and Equation 3, the right

hand side plots the variable costs of the trial depending

on the choice of B and T, for several different drug effect

sizes. Of note, very short trials such as B = 4 and T = 2

appear to be quite cost-effective for drugs of effect size

20% and higher.

Figure 4 summarizes the least restrictive value of min

required to obtain the optimal trial cost for a given com-

bination of B and T. Of note, this plot does not require

min = 8 for each combination, suggesting that in many

cases a lower value of min would be reasonable.
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To better summarize the outcomes of the many simula-

tions, linear regression models were developed (Table 1).

For the RR50 of the placebo arm (RR50placebo), the

terms B, T and the B:T interaction were sufficient without

requiring drop or N. When min was considered for

RR50placebo, it was useful alone and as an interaction

with B. The MPC for placebo (MPCplacebo) required

only B, T and the B:T interaction terms, without requir-

ing N, or drop.

The three models for RR50power included either min,

drug, or dropout. Higher drug effect size increased the

RR50power. Higher values of min increased the

RR50power. All three models of RR50 included N, and it

served to increase RR50power. The relationship of B and

T to RR50power depended on if drug was included; when

not included, B and T had negative beta values, when

drug was included, B and T had positive betas. Table 2

lists all the beta values for the 3 RR50power models. The

details of these models are highlighted because of their

importance in determining the sample size for the overall

trial, as it is known that RR50 is generally of lower statis-

tical power than MPC outcomes.7 Of note, the model for

dropout did not find that the dropout rate was a signifi-

cant factor, rather it favored combinations of B, T, and N

alone.

Discussion

This study explored the complex relationship between RCT

trial parameters, statistical efficiency, expected placebo

responses, and economic consequences. Using a big data

Monte Carlo simulation approach, we explored the

parameter space for trial design including duration of base-

line and test periods, minimum monthly seizure rate

required for eligibility, number of patients needed, drop-

out, and drug effect size. We found evidence that shorter

trials can still achieve sufficient power with dramatically

lower cost. We found that the strongest predictors of pla-

cebo response were durations of baseline and test periods.

Drug effect size, but not dropout rate, had a major impact

on trial efficiency and cost. The least restrictive minimum

seizure rate was found to depend on the trial durations

selected. The close relationship between trial parameters

and expected placebo response indicates that care must be

taken in selecting parameters that lead to optimal out-

comes, depending on what factors are deemed most impor-

tant for the trial (i.e. low cost, high statistical power, etc.).

It is a widely held view that long treatment arms (such

as 3 months) are required to demonstrate efficacy of a

drug. Under the assumption that the effect size of a drug

within an individual is stable, at least in a probabilistic

fashion, we demonstrated that statistical power can be

achieved with much shorter trial durations. This means

that a drug that is truly effective can be proven to be so

in a shorter time, and ineffective drugs can be disproven

quickly as well. Conversely, if one rejects the stable effect

size assumption, then one must also conclude that a 3-

month treatment phase is also too short. Indeed, without

the stability assumption, one must test drugs for years to

be certain of ongoing effectiveness.

Prior work in modeling the consequences of different

trial parameters is consistent with our findings here, par-

ticularly that very short trials (baseline=4 weeks,

test=3 weeks) may be sufficiently powered.8 In that study,

Figure 2. Expected values of placebo RR50 and MPC. Each grid location represents the average value (RR50 or MPC) in the placebo arm of 1000

trials with identical parameters. All trials used number of patients (N) = 900, percentage of patients that drop out (dropout) = 0, and minimum

monthly seizure rate during baseline required for inclusion (min) = 4. The different grid locations represent different combinations of baseline

weeks (B) and test weeks (T) values for the trial duration. RR50 and MPC were both correlated with B and inversely correlated with T. Note that

the color scales differ in the MPC figure and the RR50 figure. The lowest values of RR50 correspond to the most negative values of MPC.
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trial data was used from a specific drug trial, meaning

that they were unable to vary drug effect size and eligibil-

ity criteria as we did. In contrast, our study was able to

explore a much wider segment of the parameter space

because our dataset had less restrictions upon it initially.

We also were able to draw from a much larger initial

Figure 3. Cost analysis. Along the left hand side a summary of the drug parameter sweep is shown, including drug effect size (drug) of

10,20,30 and 40%. Of note, for all the simulations in this figure, the minimum monthly seizure rate during baseline (min) = 4, and the

percentage of patients that dropped out (dropout)=0. The x axis for all graphs represents number of baseline weeks (B). For each grid position in

the left graphs (combination of B and T), number of patients in the trial (N) was tested for N = 100,150,200,. . .,900. The lowest value of N

required to achieve 90% or better power at distinguishing “drug” from “placebo” is represented by the color of the grid position. Thus, for drug

effect sizes 20% or higher, trials with baseline 2–4 weeks longer than test appear to be more efficient than other combinations. With stronger

drugs, more trial baseline (B) and test (T) combinations can reliably distinguish drug from placebo. Of note, the highest number of patients (N)

tested was N = 900, therefore grid elements in white represent combinations that did not fulfill the 90% power requirement at N = 900. Along

the right hand side, Equation 3 was used to calculate the variable cost of a trial with a given B and T, using the N obtained from the figures on

the left. Of note, very low combinations such as B = 4, T = 2 appear to be very cost-efficient while retaining 90% statistical power.
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sample of patients due to the large database we used,

allowing for additional population features to enter our

results. We feel that the findings of this study validate but

also expand the original findings of the work by French

et al.8

Limitations

Our approach here is predicated on the premise that nat-

ural variability in seizure frequency is the dominant force

in producing a placebo response.4 There are certainly

other possible forces, such as psychological influence,

regression to the mean, and geographic variation.9,10 It

currently remains unknown to what extent each factor

plays a role in epilepsy trials. Studies suggest at least some

relationship may be present between seizure rates and

stress,11,12 though the details remain unclear. This study

certainly finds placebo response values that are consistent

with historical studies, supporting the hypothesis that nat-

ural variability may be dominant, however further work

in this area is needed. Future RCT simulation models

could include psychological or other influences, as new

empirical evidence becomes available.

The primary dataset utilized in this simulation study is

derived from patient reported outcomes, from a self-

selected group of patients. Although it is certainly true that

such data has some reliability concerns, it is important to

reflect on the fact that all outpatient epilepsy drug trials to

date rely on self-reported seizure records, almost always

recorded on paper diaries. Paper diaries are likely less reli-

able than electronic diaries for seizures, though this has yet

to be demonstrated conclusively.5,13 SeizureTracker.com

data has the additional limitation that diagnoses are by

self-report, rather than with physician review, raising the

possibility that at least some of the data used for this study

may have come from patients who do not truly have epi-

lepsy.10 In one study, up to 30% of patients who were trea-

ted for years with anti-seizure medication found that after

video-EEG that they do not truly have epilepsy.14 More-

over, video-EEG monitoring is not a common screening

test for trial entry. This suggests that clinical trials likely

suffer from the same mis-diagnosis issue. It is financially

impractical to correct this potential source of mis-diagnosis

in RCTs with present technology. Thus, although the pri-

mary dataset may have certain imperfections resulting in a

Figure 4. Optimizing “min”. Similar to figures 1 and 2, each grid

element represents a summary of numerous simulated trials. Each

color element represents the lowest value for the minimum monthly

seizure rate during baseline (min) selected. To be selected, all

combinations of min and N were evaluated for cost (Equation 3),

requiring >=90% statistical power for a chosen combination. The

value of min that optimized cost is displayed for each grid element.

To identify the values displayed, N was tested for

N = 100,150,200,. . .,900. Min was tested at 2,4,6 and 8. The x axis

for all graphs represents number of baseline weeks (B). Of note,

values greater than 8 were not tested, therefore white represents

situations in which the lowest min value is unknown.

Table 1. Linear fit models to represent the average response of the

1000 trials, given various input trial parameters.

Inputs Output Best fit model

B,T,N,drug RR50placebo B + T + B:T

RR50power B + T + drug + N + B:T + B:drug + T:

drug + B:N + T:N + drug:N + B:

T:drug + B:T:N + B:drug:N +

T:drug:N + B:T:drug:N

MPCwilcox T + drug + N + T:drug + T:N +

drug:N + T:drug:N

MPCplacebo B + T + B:T

B,T,N,min RR50placebo B + T + min + B:T + B:min

RR50power B + T + min + N + B:T + B:min +

T:min + B:N + T:N + B:T:min + B:T:N

MPCwilcox T + min + B + T:min + T:N + min:N +

T:min:N

MPCplacebo B + T + B:T

B,T,N,drop RR50placebo B + T + B:T

RR50power B + T + N + B:T + B:N + T:N + B:T:N

MPCwilcox T + N + T:N

MPCplacebo B + T + B:T

Three different parameter sweeps were considered, and within those,

4 outcomes were predicted by the linear models. RR50placebo repre-

sents the RR50 in the placebo arm. RR50power is the statistical power

of the RR50 comparison between drug and placebo using the Fisher

Exact test. MPCwilcox is the statistical power of the MPC comparison

between drug and placebo using the Wilcoxon Rank Sum test.

MPCplacebo is the MPC value from the placebo arm. The best fit

model listed represents the model chosen from the model selection

analysis. B = baseline duration in weeks. T = test duration in weeks.

Drug = drug effect size. N = total number of patients in a trial.

Min = minimum monthly seizure rate for inclusion criteria.

Drop = dropout rate.
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lower signal-to-noise ratio, typical epilepsy clinical trials

may have similar concerns.

An assumption about dropout occurring with uniform

distribution any time during the trial duration was

employed here. We acknowledge that there may be a sys-

tematic bias for patients to drop out of epilepsy RCTs

when their seizure rates go above some level. Similarly,

drug side effects may result in nonrandom dropout. We

are not aware of any systematic analysis demonstrating

this in epilepsy, therefore, we used the simpler assump-

tion for our initial investigation of the parameter space.

An interesting area for further study is how various types

of systematic reasons for dropout would affect the out-

come of clinical trials, and the relationship of this to

other trial parameters.

This study did not account for the added cost and

delays associated with a titration period typical of clinical

trials.15 Some drugs require very long titration periods,

while others can be initiated quite rapidly. It is likely that

the general trends seen in these simulations regarding the

impact of trial parameters are similar with or without the

inclusion of titration periods, though this remains to be

further investigated.

Newer trial outcome metrics, such as the time-to-pre-

randomization,16 would be affected in different ways by

trial parameter selection. The results found here cannot

be readily generalized to other outcome metrics, and fur-

ther simulation would be required.

Future directions

This study suggests future large-scale trial simulations that

can further elucidate the optimal selection of trial param-

eters a priori. In future work, additional parameters can

be explored individually and in a multivariable fashion.

For example, inclusion/exclusion criteria involve seizure

clustering, age, and subtype of epilepsy should be further

investigated. In addition, using other datasets or statistical

modeling that can generate datasets would increase the

confidence in the results found in simulation studies of

this kind. Investigating newer trial analysis methods, such

as the time-to-prerandomization technique would require

further simulation as well.
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